A Unified Framework for UC from Only OT
نویسندگان
چکیده
In [1], the authors presented a unified framework for constructing Universally Composable (UC) secure computation protocols, assuming only enhanced trapdoor permutations. In this work, we weaken the hardness assumption underlying the unified framework to only the existence of a stand-alone secure semi-honest Oblivious Transfer (OT) protocol. The new framwork directly implies new and improved UC feasibility results from only the existence of a semi-honest OT protocol in various models. Since in many models, the existence of UC-OT implies the existence of a semi-honest OT protocol. Furthermore, we show that by relying on a more fine-grained analysis of the unified framework, we obtain concurrently secure computation protocols with super-polynomial-time simulation (SPS), based on the necessary assumption of the existence of a semi-honest OT protocol that can be simulated in super-polynomial times. When the underlying OT protocol has constant rounds, the SPS secure protocols constructed also have constant rounds. This yields the first construction of constant-round secure computation protocols that satisfy a meaningful notions of concurrent security (i.e., SPS security) based on tight assumptions. A notable corollary following from our new unifed framwork is that standalone (or bounded-concurrent) password authenticated key-exchange protocols (PAKE) can be constructed from only semi-honest OT protocols; combined with the result of [2] that the existence of PAKE protocols implies that of OT, we derive a tight characterization of PAKE protocols.
منابع مشابه
On the Complexity of UC Commitments
Motivated by applications to secure multiparty computation, we study the complexity of realizing universally composable (UC) commitments. Several recent works obtain practical UC commitment protocols in the common reference string (CRS) model under the DDH assumption. These protocols have two main disadvantages. First, even when applied to long messages, they can only achieve a small constant r...
متن کاملA Unified Approach to Constructing Black-box UC Protocols in Trusted Setup Models
We present a unified framework for obtaining black-box constructions of Universal Composable (UC) protocol in trusted setup models. Our result is analogous to the unified framework of Lin, Pass, and Venkitasubramaniam [STOC’09, Asiacrypt’12] that, however, only yields non-black-box constructions of UC protocols. Our unified framework shows that to obtain black-box constructions of UC protocols,...
متن کاملA Framework for Efficient Adaptively Secure Composable Oblivious Transfer in the ROM
Oblivious Transfer (OT) is a fundamental cryptographic protocol that finds a number of applications, in particular, as an essential building block for two-party and multi-party computation. We construct a round-optimal (2 rounds) universally composable (UC) protocol for oblivious transfer secure against active adaptive adversaries from any OW-CPA secure public-key encryption scheme with certain...
متن کاملSPHF-Friendly Non-interactive Commitments
In 2009, Abdalla et al. proposed a reasonably practical password-authenticated key exchange (PAKE) secure against adaptive adversaries in the universal composability (UC) framework. It exploited the Canetti-Fischlin methodology for commitments and the Cramer-Shoup smooth projective hash functions (SPHFs), following the Gennaro-Lindell approach for PAKE. In this paper, we revisit the notion of n...
متن کاملUC-Secure Multi-Session OT Using Tamper-Proof Hardware
In this paper, we show the first UC-secure multi-session OT protocol using tamper-proof hardware tokens. 1 The sender and the receiver exchange tokens only at the beginning. Then these tokens are reused in arbitrarily many sessions of OT. The proposed scheme is UC-secure against static adversaries if the DDH assumption holds and a unique signature scheme exists. There exist a unique signature s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012